Košík je prázdný

Integrace - per partes

O kurzu

V tomhle kurzu se budeme zabývat metodou per partes. Určitě už jste o tom ve škole slyšeli a možná vám přišlo nepochopitelné, co se s čím násobí, jak se to od sebe odčítá a čím to, že se tam vždycky nějak změní znaménko. Tak toho už se nemusíte bát, protože vám ukážu, jak v příkladech správně používat závorky, abychom ta záludná znaménka zase nepopletli. Co se totiž často děje, je to, že pak v odpovědích u zápočtového testu naleznete i tu vaši odpověď se špatným znaménkem a v dobré víře ji zaškrtnete. Ten, kdo ten test sestavoval totiž s těmito chybami počítal. Pojďme se tedy vrhnout na příklady a dokažme u testu, že se jen tak nenecháme nachytat mylnou odpovědí!

1. V první lekci si řekneme, kdy se tato metoda používá a jak poznat ze zadání příkladu, že se má počítat pomocí per partes. Také si ukážeme, jak zvolit funkce do tabulky a co s čím vynásobit, aby nám vyšel správný výsledek.

2. V druhé lekci se podíváme na dva úvodní příklady, na kterých si vyzkoušíme postup výpočtu při metodě per partes, který jsme se naučili v předchozí lekci. 

x.cosxdx

sinx.(3x5)dx

3. V třetí lekci si vyzkoušíme příklad, při kterém je nutné použít metodu per partes dokonce dvakrát za sebou. Bude to zdlouhavé, ale zvládneme to!

(x2+x)exdx

4. Ve čtvrté lekci nás čeká ještě horší příklad, a to takový, že budeme muset použít metodu per partes dokonce třikrát. Jak na to a jak se vyvarovat nejčastějších chyb si ukážeme na příkladu:

(x3+3)sinxdx

5. V páté lekci si probereme opravdu zvláštní příklad, kdy se pomocí metody per partes vrátíme zpět k zadání. Ani to nás ale nemůže zaskočit, protože si ukážeme, jak z takového příkladu vybruslit.

excos3xdx

6. V šesté lekci začneme metodu per partes používat v případech, kdy se v zadání objeví nějaká z cyklometrických funkcí - arcus. Co vybrat k derivování a co k integrování si ukážeme na následujícím příkladu:

x.arctgxdx

7. V sedmé lekci budeme pokračovat ve výpočtu integrálů obsahujících funkci arcus. Příklad bude opět o něco náročnější, ale se znalostmi z minulé lekce ho hravě zvládneme.

x3.arctgxdx

8. V osmé lekci se pokusíme vyjasnit rozdíl mezi funkcí složenou a součinem dvou funkcí, neboli, jestli je v zadání pouze jedna funkce, nebo funkce dvě. Podobná zadání, avšak rozdílný počet funkcí si ukážeme na mnoha příkladech, z nich vybrané dva jsou:

cos(3x+5)dx

(3x+5)cosxdx

9. V deváté lekci si předvedeme trik, kdy je v zadání pouze jedna funkce, ale my do tabulky per partes potřebujeme funkce dvě. jak tuto zapeklitou situaci vyřešit si vysvětlíme na tomto příkladu:

arcsin(3x)dx

10. V desáté lekci se přesvědčíme o tom, že metoda per partes lze používat i pro logaritmy. Jak umístit funkce do tabulky, neboli co integrovat a co derivovat, si ukážeme na příkladu:

(2x1)logxdx

11. V jedenácté lekci si naznačíme, co dělat, když v zadání místo součinu funkcí dostaneme jejich podíl. Není to složité, jen musíte vědět, jak nato. A přesně to si vysvětlíme v tomto příkladu:

(lnxx)2dx

12. Ve dvanácté lekci si zopakujeme co dělat, když v zadání chybí druhá funkce. Tentokrát se tak stane u zadání, které obsahuje přirozený logaritmus:

ln(4x2)dx

Peťa Podešvová

Peťa Podešvová

Péťa úspěšně absolvovala fakultu stavební ČVUT a nyní se naplno věnuje doučování matematiky. Práce se studenty ji strašně moc baví a naplňuje. Ve volném čase ráda dobrodružně cestuje, vyhledává hlavně hory, přírodní parky a ráda spí pod stanem. Řídí se heslem “Live a life you will remember”!

Jak ostatní hodnotí Petru:

To nejdůležitější

Délka kurzu: 1 hod 44 min Počet lekcí: 13 Studenti: 39
  • Seznam lekcí

  • Úvodní video
  • 1. Použití metody
  • 2. Součin - úvodní příklady
  • 3. Součin - dvakrát per partes
  • 4. Součin - třikrát per partes
  • 5. Součin - zvláštní příklad
  • 6. Arcus - příklad 1
  • 7. Arcus - příklad 2 lekce zdarma
  • 8. Počet funkcí
  • 9. Arcus - příklad s jedničkou
  • 10. Logaritmus - příklad
  • 11. Logaritmus - příklad s podílem
  • 12. Logaritmus - příklad s jedničkou